|
|- |bgcolor=#e7dcc3|Cells |64 |1 rr 30px 1 30px 30 × 30px 20 30px |- |bgcolor=#e7dcc3|Faces |194 |80 triangles 90 squares 24 pentagons |- |bgcolor=#e7dcc3|Edges |colspan=2|210 |- |bgcolor=#e7dcc3|Vertices |colspan=2|80 |- |bgcolor=#e7dcc3|Dual |colspan=2| |- |bgcolor=#e7dcc3|Symmetry group |colspan=2|(), order 120 |- |bgcolor=#e7dcc3|Properties |colspan=2|convex, regular-faced |} In 4-dimensional geometry, the dodecagonal cupola is a polychoron bounded by a rhombicosidodecahedron, a parallel dodecahedron, connected by 30 triangular prisms, 12 pentagonal prisms, and 20 tetrahedra.〔(Convex Segmentochora ) Dr. Richard Klitzing, Symmetry: Culture and Science, Vol. 11, Nos. 1-4, 139-181, 2000 (4.152 dodecahedron || rhombicosidodecahedron)〕 == Related polytopes== The ''dodecahedral cupola'' can be sliced off from a runcinated 120-cell, on a hyperplane parallel to a dodecahedral cell. The cupola can be seen in a pentagonal centered orthogonal projection of the runcinated 120-cell: 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Dodecahedral cupola」の詳細全文を読む スポンサード リンク
|